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Abstract: Photolysis of alkyl cobaloximes with malelc anhydnde and PhSSPh proceeds via radical 

alkene addition and subsequent PhSSPh trappmg. The product tram 3-phenylthlo 4-alkyl succmlc 

anhydrides can be converted by oxidation and thermal syn elimination into 3-substituted malelc 

anhydrides, which are known to be regloselectively and chemoselectlvely reduced to produce y- 

hydroxybutenolides or butenohdes 

Cobalt-mediated radical alkyl-alkenyl cross couplmgs have been shown to be synthetically useful 

reactions.2 These reactions are non-reductive. Regeneration of the alkene functionality in the products can be 
exploited for further synthetic etaboration or can be used to form an alkene m a target molecufe. An attractive 
application of this chemistry, shown in the scheme on the next page, is a cobalt-mediated approach to the 

synthesis of substltu~d maleic ~hy~des, which can then be converted to malennides, y-hydroxybutenolldes, 
or butenohdes 3 These moieties are widespread in Nature and are included in b~ologicatly active molecules 

such as the a&cancer antlbrotz showdomycin (1X4 the anti-inflammatory phosphoiipase A2 mhibltor 

manoahde (2),5 and the cardlotonic drug digltoxm (3).6 

0 

OH OH OH 

3 

The results of a model study using decyl cobaloxlme 47 and malelc anhydride were disappointing; 4 was 
slowly consumed but none of the desired cross coupling product could be detected. Thrs was an unusual 
result. Rate constants for the addition of nucleophthc alkyl radicals to maleic anhydnde are approxtmately 
IO7 M-t s-t,8 winch are lo2 times faster than for other activated alkenes which smoothly undergo cobalt- 
mediated radical cross couplmg under similar condltlons. The decyl radical must be adding to the malelc 
anhydride but P-H eltminatlon may be unfavorable due to rmg stram m the malezc anhydnde moiety, allowmg 
ohgomenzatlon and other side reactions to become dominant. 
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Since the rate of addition of nucleophilic alkyl 
radicals to maleic anhydnde IS so fast and radical 

hV 

R-Co(dmgH)spy - R* 
- l Co(dmqH)spy 

polymerization of maieic anhydride is so slow,9 0 
condrtrons were devised to trap the alkyl radical 
with a malem anhydride moiety followed by I 0 
capture of the resultmg radical with PhSSPh. c 

Anaerobic visible light photolys~s’o of a CH3CN 
0 

solution of 4 (20 mM), maleic anhydrtde (200 
mM, 10 eqmv), and PhSSPh (20 mM, 1 equiv) for 

RHO hv HHo 

24 hr at 15-20 OC led to 12 (yield not 
deternnned)r r and a 64% yield of 8. Only a single 

py(dmgH)2Co x 
O-_ 

G 
0 

H . 
HO 0 

dmstereomer of 8, which proved to be the trans 
Isomer shown, could be detected by rH NMR. 
Examination of the productron of 8 vs time of 
photolysis using the concentratrons of reactants 

l Co(dmgH)2py 
0 

0 

J 

/ 

0 ’ 11 

unfavorable 

P-H 
ellmmatlon 

(56%), 20 (60%), 30 (78%), 41 (77%). Several ~lymer 
H x 

0 

indicated above provrded the following results: 0 
reaction time in hours (% yield 25%); 1 (14%). 2 R 

(27%). 3 (33%), 4 (37%), 5 (37%), 7 (46%), 10 
oljgomer I 0 

then 

varrables were tested in an attempt to raise the 
yield of 8 and/or reduce the reaction time. Using 
two 300 W light bulbs instead of one for 11 hours of photolysrs at 20 OC raised the yreld of 8 to 68%. 
Changing from acetonitrile to benzene as the solvent and lowermg the concentratron of 4 from 20 mM to 10 
mM each resulted m a lower yield of 8 (11 h of photoIysls, two 300 W bulbs, 20 OC, 56% and 58% yields, 
respectively). Addition of 20 equiv (400 mM) of maleic anhydnde, in the presence of 1.05 equiv of PhSSPh, 
increased the yield of 8 to 80-X5% after only IO hrs of photolysis (20 OC, two 300 W bulbs). These opnmrzed 
conditrons were used for the remainder of the study. 

Reactron of 5 under the same conditrons provrded 12 and a 78% yield of 9.12 A 1:l mrxture of 
dtastereomers of 9 at the -CH~CH3)(~H2)gCH3 center was observed but only the tram Isomer on the succmic 
anhydride ring could be detected by tH NMR. Reaction of 6 under the same conditions provided an 81% 
yield of 10. A 6:4 mixture of dtastereomers of 10 at the -CH(OAC)CH~CH(CH~~ center was observed but 
only the trans isomer on the succimc anhydrrde ring could be detected by tH NMR. Reaction of 7 under the 
same condttions provided 12 and a 41% isolated yield of 11. No reactton of the l CH(CH3)CN radical wtth 
malerc anhydride could be detected. This result can be explained by considermg that the reaction of maleic 
anhydride, a very electrophihc alkene, with an electrophtlic radical such as l CH(CH$CN will be much slower 
than wrth nucleophil~c alkyd radicals formed from 4,5 and 6. 

Q” OR R-SPh + PhSCo(dmgH)2py 

R - Wdmg&w 
PhSSPh Ft SPh 

4 R = (Cl-Q&H3 9 R = (CH&CHB 11 R = CH(CHJ)CN 12 

5 R = ~H(CH~)(CH~)*CH:, 9 R = CH(C~)(cH~)8~H3 

6 R = CH(OAc)CH$H(CH& 10 R = CH(OAc)CH$H(CH& 

7 A = CH(CH,)CN 
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Treatment of 8 with mera-chloroperoxybenzotc acid followed by syn elimmation at 0 OC (or during 
work-up at ambient temperature) produced 13 in 81% yield. 13914 Treatment of 10 with ~er~~~oro~mxy- 
benzoic acrd followed by thermal syn ehmination at 0 OC produced 14 in essentially quantitatrve yield 
Conditions are known for the regioselective reduction of 3-substrtuted maleic anhydrtdes to the corresponding 
~-hydroxybu~nolldest5 or to the corresponding butenolides.t6 

0 0 
R 

x 
I 0 

H 
0 0 

8 R = (CH&CH3 13 R = (CHJ9CH3 

10 R = CH(OAc)CH*CH(CH~)~ 14 R = CH(OAc)CH~CH(CH~)~ 

OH 0 
R Li(tBuO)&lH R ~-IA/H.,, THF, -78 “C 

I 0 
H DME, -30 OC= H x or NaBH,, THF, 0 0C16 

0 0 0 

Radical reactions can be performed under mild conditrons and are compatible with a wide range of 
functtonal groups Primary and secondary cobaloximes can be readily prepared from the correspondmg alkyl 
bromtdes, todides or alcohol sulfonate esters. The method described here should be very useful for the 
mtroduction of the maleic anhydride, butenolide and y-hydroxybutenohde motetres mto natural products and 
their synthettc analogs. For example, the sequence of reactions 6 to 10 to 14 is a model for an approach to the 
synthesis of manoahde and analogs. i 7 
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